Name: \qquad
Instructor: \qquad

Math 10550, Exam III

November 19, 2013

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for 1 hour and 15 min .
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 11 pages of the test.

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!				
1. (a)	(b)	(c)	(d)	(e)
2. (a)	(b)	(c)	(d)	(e)
3. (a)	(b)	(c)	(d)	(e)
4. (a)	(b)	(c)	(d)	(e)
5. (a)	(b)	(c)	(d)	(e)
6. (a)	(b)	(c)	(d)	(e)
7. (a)	(b)	(c)	(d)	(e)
8. (a)	(b)	(c)	(d)	(e)
9. (a)	(b)	(c)	(d)	(e)
10. (a)	(b)	(c)	(d)	(e)

Please do NOT write in this box.
Multiple Choice__
11.
12.
13.
Total

Name: \qquad
Instructor: \qquad

Multiple Choice

1. (6 pts.) The slant asymptote of $y=\frac{x^{2}+2 x+1}{x-1}$ is given by
(a) $y=3$
(b) $y=x+3$
(c) $y=x$
(d) $x=1$
(e) $y=1$

We find the slant asymptote by long division.

$$
x-1) \begin{array}{r}
x+3 \\
\begin{array}{r}
x^{2}+2 x+1 \\
-x^{2}+x \\
\hline \frac{3 x+1}{4}
\end{array} \\
\frac{-3 x+3}{4}
\end{array}
$$

Thus the slant asymptote is $y=x+3$
2. (6 pts.) The equation $x^{5}+x-1=0$ has one solution between 0 and 1. Find the result of one iteration of Newton's method applied to this equation with 1 as the starting point (i.e. find x_{2} using Newton's method applied to the equation with $x_{1}=1$).
(a) $\frac{3}{4}$
(b) $\frac{5}{7}$
(c) $\frac{1}{2}$
(d) 1
(e) $\frac{5}{6}$

Recall that Newton's method uses the formula

$$
x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}
$$

For the given $f(x)$, we have $f(1)=1+1-1=1$. Also, since $f^{\prime}(x)=5 x^{4}+1$, we have $f^{\prime}(1)=5(1)+1=6$. So Newton's method gives

$$
x_{2}=1-\frac{f(1)}{f^{\prime}(1)}=1-\frac{1}{6}=\frac{5}{6}
$$

Name: \qquad
Instructor: \qquad
3. (6 pts.) A car racing on a straight road crosses the starting line with a velocity of 88 $\mathrm{ft} / \mathrm{sec}$. From this point on it accelerates at $\frac{60}{\sqrt{t}} \mathrm{ft} / \mathrm{sec}^{2}$. How fast in $\mathrm{ft} / \mathrm{sec}$ will the car be going 4 seconds after the car has crossed the starting line?
(a) $328 \mathrm{ft} / \mathrm{sec}$
(b) $292 \mathrm{ft} / \mathrm{sec}$
(c) $208 \mathrm{ft} / \mathrm{sec}$
(d) $244 \mathrm{ft} / \mathrm{sec}$
(e) $152 \mathrm{ft} / \mathrm{sec}$

Acceleration is the derivative of velocity, so to find the change in velocity we compute the definite integral of the acceleration over the time interval.

$$
\int_{0}^{4} \frac{60}{\sqrt{t}} \mathrm{~d} t=\left.120 \sqrt{t}\right|_{0} ^{4}=120 \sqrt{4}-120(0)=240
$$

Thus the change in velocity is $240 \mathrm{ft} / \mathrm{sec}$. We add this to the starting velocity to find that the velocity of the car after 4 seconds is $88+240=328 \mathrm{ft} / \mathrm{sec}$.
4. (6 pts.) The graph of a piecewise defined function $f(x)$ consisting of a semicircle and 3 straight lines, is shown below. Use the graph to calculate the value of R_{5}, the right endpoint approximation to $\int_{0}^{10} f(x) d x$ using 5 approximating rectangles.

(a) $\quad R_{5}=8$
(b) $\quad R_{5}=5$
(c) $R_{5}=12$
(d) $\quad R_{5}=6$
(e) $R_{5}=16$

The function takes the values $f(2)=2, f(4)=0, f(6)=1, f(8)=1$, and $f(10)=2$. The width of each rectangle is 2 , since we divide up an interval 10 units long into 5 pieces.

We then get the sum $R_{5}=2 f(2)+2 f(4)+2 f(6)+2 f(8)+2 f(10)=4+0+2+2+4=12$

Name: \qquad
Instructor: \qquad
5. (6 pts.) If $f(x)=\int_{0}^{5 x} \cos \left(t^{2}\right) d t$, then $f^{\prime}(x)=$
(a) $-25 \cos \left(5 x^{2}\right)$
(b) $5 \cos \left(5 x^{2}\right)$
(c) $-5 \cos \left(5 x^{2}\right)$
(d) $5 \cos \left(25 x^{2}\right)$
(e) $-5 \cos \left(25 x^{2}\right)$

Letting $g(x)=\int_{0}^{x} \cos \left(t^{2}\right) d t$, we see that $f(x)=g(5 x)$. Then the chain rule says that $f^{\prime}(x)=5 g^{\prime}(5 x)$. By the fundamental theorem of calculus, $g^{\prime}(5 x)=\cos \left((5 x)^{2}\right)$. Thus we see that $f^{\prime}(x)=5 \cos \left((5 x)^{2}\right)=5 \cos \left(25 x^{2}\right)$.
Alternatively: if we let $u(x)=5 x$, then $\int_{0}^{5 x} \cos \left(t^{2}\right) d t=\int_{0}^{u} \cos \left(t^{2}\right) d t$ and

$$
\frac{d}{d x} \int_{0}^{u} \cos \left(t^{2}\right) d t=\frac{d}{d u} \int_{0}^{u} \cos \left(t^{2}\right) d t \cdot \frac{d u}{d x}=\left[\cos \left(u^{2}\right)\right] \cdot 5=5 \cos \left(25 x^{2}\right)
$$

6. (6 pts.) Evaluate $\int\left(4-3 x^{2}\right)(4 x+1) d x$.
(a) $-36 x^{2}+16+C$
(b) $-12 x^{4}-3 x^{3}+16 x^{2}+4 x+C$
(c) $-\frac{3}{4} x^{4}-x^{3}+8 x^{2}+4 x+C$
(d) $-2 x^{5}-x^{4}+8 x^{3}+4 x^{2}+C$
(e) $-3 x^{4}-x^{3}+8 x^{2}+4 x+C$

First, we expand the integrand as $\left(4-3 x^{2}\right)(4 x+1)=-12 x^{3}-3 x^{2}+16 x+4$. We then can find the integral term by term, and obtain

$$
\int\left(4-3 x^{2}\right)(4 x+1) d x=-3 x^{4}-x^{3}+8 x^{2}+4 x+C
$$

Name: \qquad
Instructor: \qquad
7.(6 pts.) Evaluate the integral $\int_{0}^{\sqrt{\pi}} x \sin \left(x^{2}\right) d x$.
(a) $1-\frac{1}{\pi}$
(b) 2
(c) 1
(d) $\frac{\pi}{4}$
(e) $\frac{1}{4}$

We perform the substitution $u=u(x)=x^{2}$ to simplify the integrand. Note that $\mathrm{d} u=2 x \mathrm{~d} x, u(0)=0, u(\sqrt{\pi})=\pi$. Now we can write the integral as

$$
\int_{0}^{\pi} \sin (u) \frac{\mathrm{d} u}{2}
$$

Note that the upper limit has become $u(\sqrt{p i})=\pi$ since the integral is now with respect to u. Now we find

$$
\int_{0}^{\pi} \sin (u) \frac{\mathrm{d} u}{2}=\left.\frac{1}{2}(-\cos (u))\right|_{0} ^{\pi}=\frac{1}{2}(1-(-1))=1
$$

8. (6 pts.) Evaluate $\int_{1}^{9} \frac{1}{\sqrt{x}(1+2 \sqrt{x})^{2}} d x$.
(a) $\frac{1}{4}$
(b) $\frac{4}{21}$
(c) $\frac{1}{7}$
(d) 1
(e) $\frac{8}{9}$

We will use the substitution rule. Notice that if $u=u(x)=1+2 \sqrt{x}$ then $d u=\frac{d x}{\sqrt{x}}$ and $u(1)=3, u(9)=1+2 \sqrt{9}=7$. Therefore, by the substitution rule

$$
\int_{1}^{9} \frac{d x}{\sqrt{x}(1+2 \sqrt{x})^{2}}=\int_{3}^{7} \frac{d u}{(u)^{2}}=\left.\frac{-1}{u}\right|_{u=3} ^{u=7}=\frac{1}{3}-\frac{1}{7}=\frac{4}{21}
$$

Name: \qquad
Instructor: \qquad
9. (6 pts.) Evaluate $\int_{1}^{6}|x-2| d x$.
(a) $\frac{33}{2}$
(b) 8
(c) $\frac{17}{2}$
(d) $\frac{15}{2}$
(e) 4

First, note that

$$
|x-2|= \begin{cases}x-2 & x \geq 2 \\ 2-x & x \leq 2\end{cases}
$$

and so we can write

$$
\begin{aligned}
\int_{1}^{6}|x-2| d x & =\int_{1}^{2} 2-x d x+\int_{2}^{6} x-2 d x=2 x-\left.\frac{1}{2} x^{2}\right|_{1} ^{2}+\frac{1}{2} x^{2}-\left.2 x\right|_{2} ^{6} \\
& =\frac{1}{2}+8=\frac{17}{2}
\end{aligned}
$$

Name: \qquad
Instructor: \qquad
10. (6 pts.) If the following is a graph of the function $f(x)$, which graph among the answers is the graph of $\int_{0}^{x} f(t) d t$?

Note: The letter corresponding to the diagram is on the lower left.
(a)
(b)

(c)

(d) $\begin{aligned} \text { (d) } \\ -2 \\ -3 \\ -2\end{aligned}$
(e)

Name: \qquad
Instructor: \qquad
Recall that $g(x):=\int_{0}^{x} f(t) d t$ is equal to the area under the graph of $f(t)$ and that the derivative of this integral function with respect to x is $f(x)$. First notice that $g(0)=0$, which automatically eliminates three of the choices. We see that on the interval $[0,4]$ the function $g(x)$ is increasing, and on $[4,6]$ the function $g(x)$ is decreasing. Thus $x=4$ is a critical point, in fact it is a local maximum. Similarly, $g(x)$ is increasing on $[8, \infty)$, and so $x=8$ is a local minimum. This information eliminates another choice, leaving one left, namely

Name: \qquad
Instructor: \qquad

Partial Credit

You must show your work on the partial credit problems to receive credit!
11. (13 pts.) Evaluate the definite integral $\int_{0}^{2}\left(1+x^{2}\right) d x$ by using right endpoint approximations and the limit definition of the definite integral.

Hint: $1^{2}+2^{2}+3^{2}+\cdots+n^{2}=\frac{1}{6} n(n+1)(2 n+1)$.
When we divide up the interval [0, 2] into n intervals, each interval has width $\frac{2}{n}$. Thus $\Delta x=\frac{2}{n}$ and $x_{i}=0+i \Delta x=i \Delta x=\frac{2 i}{n}$. The right endpoint approximation tells us that the area is approximated by $R_{n}=\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x$.

We compute

$$
\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x=\sum_{i=1}^{n}\left(1+\frac{4 i^{2}}{n^{2}}\right)\left(\frac{2}{n}\right)=\sum_{i=1}^{n}\left(\frac{2}{n}+\frac{8 i^{2}}{n^{3}}\right)
$$

The first term in the summation is just adding $\frac{2}{n}$ together n times, so it contributes 2 to the sum. For the second part of the sum, we use the hint.

$$
\sum_{i=1}^{n} \frac{8 i^{2}}{n^{3}}=\frac{8}{n^{3}} \sum_{i=1}^{n} i^{2}=\frac{8}{n^{3}}\left(\frac{1}{6} n(n+1)(2 n+1)\right)=\frac{4}{3}\left(\frac{n(n+1)(2 n+1)}{n^{3}}\right)
$$

(Note that in the second step we've factored out $\frac{8}{n^{3}}$ since it does not depend on i.)
This shows that

$$
R_{n}=2+\frac{4}{3}\left(\frac{n(n+1)(2 n+1)}{n^{3}}\right)
$$

Using the limit definition of the integral, we find

$$
\int_{0}^{2}\left(1+x^{2}\right) d x=\lim _{n \rightarrow \infty} R_{n}=\lim _{n \rightarrow \infty}\left(2+\frac{4}{3}\left(\frac{n(n+1)(2 n+1)}{n^{3}}\right)\right)=2+\frac{4}{3}(2)=\frac{14}{3} \text { or } 4 \frac{2}{3} .
$$

Note that in going from the third to the fourth term above, we've used that

$$
\lim _{n \rightarrow \infty} \frac{n(n+1)(2 n+1)}{n^{3}}=\lim _{n \rightarrow \infty} \frac{2 n^{3}+3 n^{2}+n}{n^{3}}=2 .
$$

Name: \qquad
Instructor: \qquad
12.(13 pts.) Find all the points on the hyperbola $y^{2}-x^{2}=4$ that are closest to the point $(2,0)$.

The distance from a point (x, y) to the point $(2,0)$ is given by the formula $d=$ $\sqrt{(x-2)^{2}+y^{2}}$. Therefore we wish to find the points (x, y) on the hyperbola for which the value

$$
\sqrt{(x-2)^{2}+y^{2}}
$$

is minimal. It is equivalent to minimize the function

$$
(x-2)^{2}+y^{2} .
$$

As (x, y) is on the hyperbola, we can write $y^{2}=x^{2}+4$. So we must minimize

$$
f(x)=(x-2)^{2}+x^{2}+4
$$

To minimize, we derivate with respect to x and find critical points, that is we find real zeros of

$$
f^{\prime}(x)=2(x-2)+2 x=4 x-4=0
$$

which gives $x=1$. Notice that $x=1$ is indeed a minimum since for $x<1$ one has $f^{\prime}(x)<0$ and for $x>1$ one has $f^{\prime}(x)>0$. Notice that when $x=1$, the only y-values for which $(1, y)$ belongs on the hyperbola are those so that $y^{2}=5$, i.e. $y= \pm \sqrt{5}$. Thus, the points on the hyperbola which are closest to $(2,0)$ are $(1, \pm \sqrt{5})$.

Name: \qquad
Instructor: \qquad
13. (14 pts.) A page of a book is to have a total area of 150 square inches, with 1 inch margins at the top and sides, and a 2 inch margin at the bottom. Find the dimensions in inches of the page which will have the largest print area.

Let x denote the total width and y denote the total height. So the width of the printed area is $x-2$ and the height of the printed area is $y-3$. Then the total area of the page can be expressed as

$$
A_{t o t a l}=x y
$$

We are given that $A_{\text {total }}=150$, so $y=150 / x$. We wish to maximize

$$
A_{\text {print }}=(x-2)(y-3)=(x-2)\left(\frac{150}{x}-3\right)=156-3 x-\frac{300}{x} .
$$

Differentiating with respect to x and finding critical points gives

$$
A_{\text {print }}^{\prime}(x)=-3+\frac{300}{x^{2}}=0
$$

so we must have $300-3 x^{2}=0$, i.e. $x^{2}=100$. So $x=10$ inches.
Using the first derivative test shows that 10 is indeed a maximum. For $x<10, A_{p r i n t}^{\prime}>0$, and for $x>10, A_{p r i n t}^{\prime}<0$.
$y=150 / x$, so we have $y=\frac{150}{10}=15$. Therefore the page which maximizes the printed area has the dimensions 10 inches by 15 inches.

Name: \qquad
Instructor: ANSWERS

Math 10550, Exam III

November 19, 2013

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for 1 hour and 15 min .
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 11 pages of the test.

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!				
1. (a)	(-)	(c)	(d)	(e)
2. (a)	(b)	(c)	(d)	($)$
$3 .(\bullet)$	(b)	(c)	(d)	(e)
4. (a)	(b)	($)$	(d)	(e)
5. (a)	(b)	(c)	(-)	(e)
6. (a)	(b)	(c)	(d)	($)$
7. (a)	(b)	(${ }^{\text {) }}$	(d)	(e)
8. (a)	($)$	(c)	(d)	(e)
9. (a)	(b)	(${ }^{\text {) }}$	(d)	(e)
10. (a)	(b)	(c)	($)$	(e)

Please do NOT write in this box.
Multiple Choice__
11.
12.
13.
Total

