Name: _____

Instructor: _____

Math 10550, Exam III November 19, 2013

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for 1 hour and 15 min.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 11 pages of the test.

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!								
1.	(a)	(b)	(c)	(d)	(e)			
2.	(a)	(b)	(c)	(d)	(e)			
3.	(a)	(b)	(c)	(d)	(e)			
4.	(a)	(b)	(c)	(d)	(e)			
5.	(a)	(b)	(c)	(d)	(e)			
6.	(a)	(b)	(c)	(d)	(e)			
7.	(a)	(b)	(c)	(d)	(e)			
8.	(a)	(b)	(c)	(d)	(e)			
9.	(a)	(b)	(c)	(d)	(e)			
10.	(a)	(b)	(c)	(d)	(e)			

 Please do NOT write in this box.

 Multiple Choice

 11.

 12.

 13.

 Total

Name: _____

Instructor: _____

Multiple Choice

1.(6 pts.) The slant asymptote of $y = \frac{x^2 + 2x + 1}{x - 1}$ is given by

(a) y = 3 (b) y = x + 3 (c) y = x

(d) x = 1 (e) y = 1

We find the slant asymptote by long division. x + 3

$$\begin{array}{r} x+3 \\ x-1 \\ \hline x^2+2x+1 \\ -x^2+x \\ \hline 3x+1 \\ -3x+3 \\ \hline 4 \end{array}$$

Thus the slant asymptote is y = x + 3

2.(6 pts.) The equation $x^5 + x - 1 = 0$ has one solution between 0 and 1. Find the result of one iteration of Newton's method applied to this equation with 1 as the starting point (i.e. find x_2 using Newton's method applied to the equation with $x_1 = 1$).

(a)
$$\frac{3}{4}$$
 (b) $\frac{5}{7}$ (c) $\frac{1}{2}$ (d) 1 (e) $\frac{5}{66}$

Recall that Newton's method uses the formula

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$$

For the given f(x), we have f(1) = 1 + 1 - 1 = 1. Also, since $f'(x) = 5x^4 + 1$, we have f'(1) = 5(1) + 1 = 6. So Newton's method gives

$$x_2 = 1 - \frac{f(1)}{f'(1)} = 1 - \frac{1}{6} = \frac{5}{6}$$

3.(6 pts.) A car racing on a straight road crosses the starting line with a velocity of 88 ft/sec. From this point on it accelerates at $\frac{60}{\sqrt{t}}$ ft/sec². How fast in ft/sec will the car be going 4 seconds after the car has crossed the starting line?

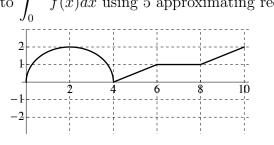
- (a) 328 ft/sec (b) 292 ft/sec (c) 208 ft/sec
- (d) 244 ft/sec (e) 152 ft/sec

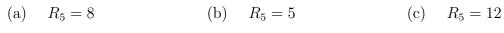
Acceleration is the derivative of velocity, so to find the change in velocity we compute the definite integral of the acceleration over the time interval.

$$\int_{0}^{4} \frac{60}{\sqrt{t}} \mathrm{d}t = 120\sqrt{t}|_{0}^{4} = 120\sqrt{4} - 120(0) = 240$$

Thus the **change** in velocity is 240 ft/sec. We add this to the starting velocity to find that the velocity of the car after 4 seconds is 88 + 240 = 328 ft/sec.

4.(6 pts.) The graph of a piecewise defined function f(x) consisting of a semicircle and 3 straight lines, is shown below. Use the graph to calculate the value of R_5 , the right endpoint approximation to $\int_{0}^{10} f(x) dx$ using 5 approximating rectangles.





(d) $R_5 = 6$ (e) $R_5 = 16$

The function takes the values f(2) = 2, f(4) = 0, f(6) = 1, f(8) = 1, and f(10) = 2. The width of each rectangle is 2, since we divide up an interval 10 units long into 5 pieces.

We then get the sum $R_5 = 2f(2) + 2f(4) + 2f(6) + 2f(8) + 2f(10) = 4 + 0 + 2 + 2 + 4 = 12$

5.(6 pts.) If
$$f(x) = \int_0^{5x} \cos(t^2) dt$$
, then $f'(x) =$
(a) $-25\cos(5x^2)$ (b) $5\cos(5x^2)$ (c) $-5\cos(5x^2)$
(d) $5\cos(25x^2)$ (e) $-5\cos(25x^2)$

Letting $g(x) = \int_0^x \cos(t^2) dt$, we see that f(x) = g(5x). Then the chain rule says that f'(x) = 5g'(5x). By the fundamental theorem of calculus, $g'(5x) = \cos((5x)^2)$. Thus we see that $f'(x) = 5\cos((5x)^2) = 5\cos(25x^2)$.

Alternatively: if we let
$$u(x) = 5x$$
, then $\int_0^{5x} \cos(t^2) dt = \int_0^u \cos(t^2) dt$ and
 $\frac{d}{dx} \int_0^u \cos(t^2) dt = \frac{d}{du} \int_0^u \cos(t^2) dt \cdot \frac{du}{dx} = [\cos(u^2)] \cdot 5 = 5\cos(25x^2).$

6.(6 pts.) Evaluate
$$\int (4 - 3x^2)(4x + 1)dx$$
.
(a) $-36x^2 + 16 + C$ (b) $-12x^4 - 3x^3 + 16x^2 + 4x + C$
(c) $-\frac{3}{4}x^4 - x^3 + 8x^2 + 4x + C$ (d) $-2x^5 - x^4 + 8x^3 + 4x^2 + C$
(e) $-3x^4 - x^3 + 8x^2 + 4x + C$

First, we expand the integrand as $(4-3x^2)(4x+1) = -12x^3 - 3x^2 + 16x + 4$. We then can find the integral term by term, and obtain

$$\int (4 - 3x^2)(4x + 1)dx = -3x^4 - x^3 + 8x^2 + 4x + C$$

7.(6 pts.) Evaluate the integral
$$\int_0^{\sqrt{\pi}} x \sin(x^2) dx$$
.

(a) $1 - \frac{1}{\pi}$ (b) 2 (c) 1 (d) $\frac{\pi}{4}$ (e) $\frac{1}{4}$

We perform the substitution $u = u(x) = x^2$ to simplify the integrand. Note that du = 2xdx, u(0) = 0, $u(\sqrt{\pi}) = \pi$. Now we can write the integral as

$$\int_0^\pi \sin(u) \frac{\mathrm{d}u}{2}$$

Note that the upper limit has become $u(\sqrt{pi}) = \pi$ since the integral is now with respect to u. Now we find

$$\int_0^{\pi} \sin(u) \frac{\mathrm{d}u}{2} = \frac{1}{2} (-\cos(u)) \bigg|_0^{\pi} = \frac{1}{2} (1 - (-1)) = 1$$

8.(6 pts.) Evaluate
$$\int_{1}^{9} \frac{1}{\sqrt{x}(1+2\sqrt{x})^{2}} dx.$$

(a) $\frac{1}{4}$ (b) $\frac{4}{21}$ (c) $\frac{1}{7}$ (d) 1 (e) $\frac{8}{9}$

We will use the substitution rule. Notice that if $u = u(x) = 1 + 2\sqrt{x}$ then $du = \frac{dx}{\sqrt{x}}$ and u(1) = 3, $u(9) = 1 + 2\sqrt{9} = 7$. Therefore, by the substitution rule

$$\int_{1}^{9} \frac{dx}{\sqrt{x}(1+2\sqrt{x})^2} = \int_{3}^{7} \frac{du}{(u)^2} = \frac{-1}{u} \Big|_{u=3}^{u=7} = \frac{1}{3} - \frac{1}{7} = \frac{4}{21}$$

Name:	
Instructor:	

9.(6 pts.) Evaluate
$$\int_{1}^{6} |x - 2| dx$$
.
(a) $\frac{33}{2}$ (b) 8 (c) $\frac{17}{2}$ (d) $\frac{15}{2}$ (e) 4

First, note that

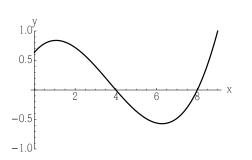
$$|x-2| = \begin{cases} x-2 & x \ge 2\\ 2-x & x \le 2 \end{cases}$$

and so we can write

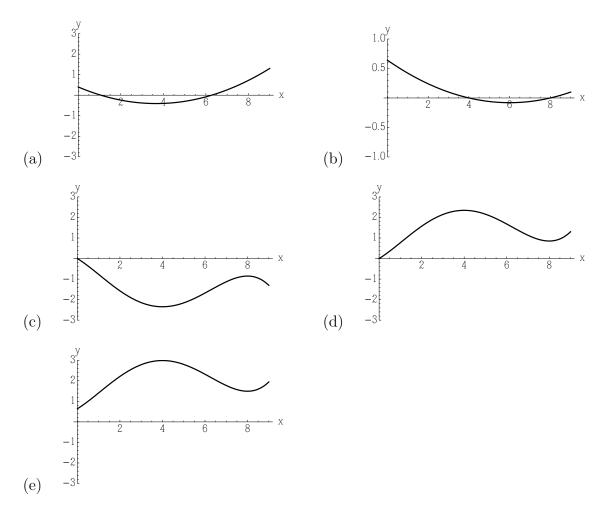
$$\int_{1}^{6} |x-2| dx = \int_{1}^{2} 2 - x \, dx + \int_{2}^{6} x - 2 \, dx = 2x - \frac{1}{2} x^{2} \Big|_{1}^{2} + \frac{1}{2} x^{2} - 2x \Big|_{2}^{6}$$
$$= \frac{1}{2} + 8 = \frac{17}{2}.$$

Name:	
Instructor:	

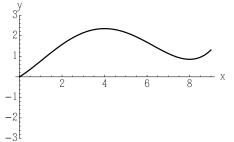
10.(6 pts.) If the following is a graph of the function f(x), which graph among the answers is the graph of $\int_0^x f(t)dt$?



Note: The letter corresponding to the diagram is on the lower left.



Recall that $g(x) := \int_0^x f(t)dt$ is equal to the area under the graph of f(t) and that the derivative of this integral function with respect to x is f(x). First notice that g(0) = 0, which automatically eliminates three of the choices. We see that on the interval [0, 4] the function g(x) is increasing, and on [4, 6] the function g(x) is decreasing. Thus x = 4 is a critical point, in fact it is a local maximum. Similarly, g(x) is increasing on $[8, \infty)$, and so x = 8 is a local minimum. This information eliminates another choice, leaving one left, namely



Partial Credit

You must show your work on the partial credit problems to receive credit!

11.(13 pts.) Evaluate the definite integral $\int_0^2 (1+x^2) dx$ by using right endpoint approximations and the **limit definition** of the definite integral.

imations and the **limit definition** of the definite integral. Hint: $1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{1}{6}n(n+1)(2n+1).$

When we divide up the interval [0, 2] into *n* intervals, each interval has width $\frac{2}{n}$. Thus $\Delta x = \frac{2}{n}$ and $x_i = 0 + i\Delta x = i\Delta x = \frac{2i}{n}$. The right endpoint approximation tells us that the area is approximated by $R_n = \sum_{i=1}^n f(x_i)\Delta x$.

We compute

$$\sum_{i=1}^{n} f(x_i) \Delta x = \sum_{i=1}^{n} \left(1 + \frac{4i^2}{n^2} \right) \left(\frac{2}{n} \right) = \sum_{i=1}^{n} \left(\frac{2}{n} + \frac{8i^2}{n^3} \right).$$

The first term in the summation is just adding $\frac{2}{n}$ together *n* times, so it contributes 2 to the sum. For the second part of the sum, we use the hint.

$$\sum_{i=1}^{n} \frac{8i^2}{n^3} = \frac{8}{n^3} \sum_{i=1}^{n} i^2 = \frac{8}{n^3} \left(\frac{1}{6} n(n+1)(2n+1) \right) = \frac{4}{3} \left(\frac{n(n+1)(2n+1)}{n^3} \right)$$

(Note that in the second step we've factored out $\frac{\delta}{n^3}$ since it does not depend on *i*.) This shows that

$$R_n = 2 + \frac{4}{3} \left(\frac{n(n+1)(2n+1)}{n^3} \right)$$

Using the limit definition of the integral, we find

$$\int_0^2 (1+x^2)dx = \lim_{n \to \infty} R_n = \lim_{n \to \infty} \left(2 + \frac{4}{3} \left(\frac{n(n+1)(2n+1)}{n^3} \right) \right) = 2 + \frac{4}{3}(2) = \frac{14}{3} \text{ or } 4\frac{2}{3}.$$

Note that in going from the third to the fourth term above, we've used that

$$\lim_{n \to \infty} \frac{n(n+1)(2n+1)}{n^3} = \lim_{n \to \infty} \frac{2n^3 + 3n^2 + n}{n^3} = 2.$$

12.(13 pts.) Find all the points on the hyperbola $y^2 - x^2 = 4$ that are closest to the point (2,0).

The distance from a point (x, y) to the point (2, 0) is given by the formula $d = \sqrt{(x-2)^2 + y^2}$. Therefore we wish to find the points (x, y) on the hyperbola for which the value

$$\sqrt{(x-2)^2 + y^2}$$

is minimal. It is equivalent to minimize the function

$$(x-2)^2 + y^2.$$

As (x, y) is on the hyperbola, we can write $y^2 = x^2 + 4$. So we must minimize

$$f(x) = (x-2)^2 + x^2 + 4$$

To minimize, we derivate with respect to x and find critical points, that is we find real zeros of

$$f'(x) = 2(x-2) + 2x = 4x - 4 = 0$$

which gives x = 1. Notice that x = 1 is indeed a minimum since for x < 1 one has f'(x) < 0 and for x > 1 one has f'(x) > 0. Notice that when x = 1, the only y-values for which (1, y) belongs on the hyperbola are those so that $y^2 = 5$, i.e. $y = \pm \sqrt{5}$. Thus, the points on the hyperbola which are closest to (2, 0) are $(1, \pm \sqrt{5})$.

13.(14 pts.) A page of a book is to have a total area of 150 square inches, with 1 inch margins at the top and sides, and a 2 inch margin at the bottom. Find the dimensions in inches of the page which will have the largest print area.

Let x denote the total width and y denote the total height. So the width of the printed area is x - 2 and the height of the printed area is y - 3. Then the total area of the page can be expressed as

$$A_{total} = xy.$$

We are given that $A_{total} = 150$, so y = 150/x. We wish to maximize

$$A_{print} = (x-2)(y-3) = (x-2)\left(\frac{150}{x} - 3\right) = 156 - 3x - \frac{300}{x}.$$

Differentiating with respect to x and finding critical points gives

$$A'_{print}(x) = -3 + \frac{300}{x^2} = 0$$

so we must have $300 - 3x^2 = 0$, i.e. $x^2 = 100$. So x = 10 inches.

Using the first derivative test shows that 10 is indeed a maximum. For x < 10, $A'_{print} > 0$, and for x > 10, $A'_{print} < 0$.

y = 150/x, so we have $y = \frac{150}{10} = 15$. Therefore the page which maximizes the printed area has the dimensions 10 inches by 15 inches.

Name: _____

Instructor: <u>ANSWERS</u>

Math 10550, Exam III November 19, 2013

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for 1 hour and 15 min.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 11 pages of the test.

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!								
1.	(a)	(ullet)	(c)	(d)	(e)			
2.	(a)	(b)	(c)	(d)	(•)			
3.	(ullet)	(b)	(c)	(d)	(e)			
4.	(a)	(b)	(•)	(d)	(e)			
5.	(a)	(b)	(c)	(ullet)	(e)			
6.	(a)	(b)	(c)	(d)	(•)			
7.	(a)	(b)	(ullet)	(d)	(e)			
8.	(a)	(•)	(c)	(d)	(e)			
9.	(a)	(b)	(ullet)	(d)	(e)			
10.	(a)	(b)	(c)	(•)	(e)			

 Please do NOT write in this box.

 Multiple Choice

 11.

 12.

 13.

 Total